Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinal cortex: an adaptive filtering approach.
نویسندگان
چکیده
Neural receptive fields are frequently plastic: a neural response to a stimulus can change over time as a result of experience. We developed an adaptive point process filtering algorithm that allowed us to estimate the dynamics of both the spatial receptive field (spatial intensity function) and the interspike interval structure (temporal intensity function) of neural spike trains on a millisecond time scale without binning over time or space. We applied this algorithm to both simulated data and recordings of putative excitatory neurons from the CA1 region of the hippocampus and the deep layers of the entorhinal cortex (EC) of awake, behaving rats. Our simulation results demonstrate that the algorithm accurately tracks simultaneous changes in the spatial and temporal structure of the spike train. When we applied the algorithm to experimental data, we found consistent patterns of plasticity in the spatial and temporal intensity functions of both CA1 and deep EC neurons. These patterns tended to be opposite in sign, in that the spatial intensity functions of CA1 neurons showed a consistent increase over time, whereas those of deep EC neurons tended to decrease, and the temporal intensity functions of CA1 neurons showed a consistent increase only in the "theta" (75-150 msec) region, whereas those of deep EC neurons decreased in the region between 20 and 75 msec. In addition, the minority of deep EC neurons whose spatial intensity functions increased in area over time fired in a significantly more spatially specific manner than non-increasing deep EC neurons. We hypothesize that this subset of deep EC neurons may receive more direct input from CA1 and may be part of a neural circuit that transmits information about the animal's location to the neocortex.
منابع مشابه
Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex
Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...
متن کاملThe effect of Gallic acid on prenatal entorhinal cortex and CA1/CA3 hippocampal areas in trimethyltin intoxication rat
Background: Prenatal intoxication with trimethyletin (TMT) induces widespread neuronal death in the central nervous system by inducing oxidative stress. The aim of this study was to evaluate the antioxidant effect of gallic acid (GA) on the neuronal density of the entorhinal cortex, hippocampal pyramidal cells and oxidative stress parameters in the fetal forebrain following TMT intoxication. ...
متن کاملNeuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats
Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...
متن کاملCalcium Channel Blockade Ameliorates Endoplasmic Reticulum Stress in the Hippocampus Induced by Amyloidopathy in the Entorhinal Cortex
Entorhinal cortex (EC) is one of the first Entorhinal cortex (EC) is one of the first cerebral regions affected in Alzheimer’sdisease (AD). The pathology propagates to neighboring cerebral regions through a prion-likemechanism. In AD, intracellular calcium dyshomeostasis is associated with endoplasmicreticulum (ER) stress. This study was designed to examine hippocampal ER stre...
متن کاملEffects of visual deprivation on synaptic plasticity of visual cortex
TBS (Theta Burst Stimulation) and PBs (Primed Bursts) are among effective tetanic stimulations for induction of LTP in hippocampus. Recent studies have indicated that TBS is effective in LTP induction in layer III synapses of neocortex, only if applied to layer IV. However, the possibility of neocortical LTP induction using PBs, has not yet been investigated. Sensory deprivation greatly influ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 9 شماره
صفحات -
تاریخ انتشار 2002